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Abstract—Ground tools for unmanned spacecraft are chang-
ing rapidly driven by twin innovations: advanced autonomy 
and ubiquitous networking.  Critical issues are the delega-
tion of low-level decision-making to software, the transpar-
ency and accountability of that software, mixed-initiative 
control, i.e., the ability of controllers to adjust portions of 
the software’s activity without disturbing other portions, and 
the makeup and geographic distribution of the flight control 
team.  These innovations will enable ground controllers to 
manage space-based resources much more efficiently and, 
in the case of science missions, give principal investigators 
an unprecedented level of direct control. 

This paper explores these ideas by describing the ground 
tools for the Remote Agent experiment aboard the Deep 
Space 1 spacecraft in May of 1999.  The experiment demon-
strated autonomous control capabilities including goal-
oriented commanding, on-board planning, robust plan exe-
cution and model-based fault protection.  We then speculate 
on the effect of these technologies on the future of space-
craft ground control. 

1. INTRODUCTION 
Current methods of controlling robotic spacecraft rely on a 
relatively large and highly skilled mission operations team 
that generates detailed time-ordered sequences of com-
mands to step the spacecraft through each desired activity.  
Each sequence is carefully constructed on the ground to 
ensure that all known operational constraints are satisfied.  
The autonomy of the spacecraft is limited. 

An alternative approach to spacecraft operations was dem-
onstrated in May 1999 by the Remote Agent Experiment 
(RAX) on the Deep Space One (DS1) spacecraft.  In this 
approach, Artificial Intelligence technology is used to en-
code the operational rules and constraints in the flight soft-
ware.  The software may be considered to be an autonomous 

“remote agent” of the spacecraft operators in the sense that 
the operators rely on the agent to achieve particular goals. 

For instance, operators often cannot know the exact condi-
tions on the spacecraft so, under this new approach, they do 
not tell the agent exactly what to do at each instant of time.  
Instead, they tell the agent what high-level goals to achieve 
and what deadlines or other timing constraints there are on 
their achievement.  The flight software then constructs and 
executes a detailed command sequence that reflects condi-
tions onboard the spacecraft and obeys all constraints and 
flight rules.  This is called “goal-oriented commanding.” 

The DS1 Remote Agent Experiment achieved multiple 
technology objectives.  In addition to goal-oriented com-
manding, RAX demonstrated robust closed-loop plan execu-
tion.  This enabled the remote agent to handle minor 
variations in the timing of spacecraft operations plus a broad 
class of minor problems without causing the planned com-
mand sequence to fail, e.g., if a switch did not turn on a de-
vice, try it a second time.  In conventional commanding 
modes, had the device not turned on, the entire sequence 
would have failed, potentially safing the spacecraft. The 
experiment also demonstrated extensive fault protection 
capabilities, including failure diagnosis, failure recovery 
using both repair and reconfiguration, on-board replanning 
following otherwise unrecoverable failures, and system-
level fault protection. 

2. BACKGROUND 
This section briefly describes the Remote Agent software 
architecture and the flight experiment.  More detail can be 
found in [3].  Section 3 describes the ground tools created 
for RAX.  Section 4 contains our analysis and predictions 
about the future of ground control. 



Software Architecture 

The Remote Agent is formed by the integration of three 
separate Artificial Intelligence technologies: an on-board 
planner-scheduler (PS), a robust multi-threaded execu-
tive(EXEC), and a model-based mode identification and 
reconfiguration module (MIR). 

The RA architecture and its relation to flight software are 
shown in Figure 1.  Viewed as a black-box, RA issues 
commands to real-time execution flight software (FSW) to 
modify spacecraft state, and receives state information 
through a set of monitors that filter data streams into a set of 
abstract properties.  The RAX manager mediated all com-
munication between the Remote Agent and the DS1 flight 
sofware. 
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Figure 1: RAX Architecture 

PS formulates near-term planning problems based on a 
long-range mission profile representing the goals of the mis-
sion, extracts goals for the next scheduling horizon, com-
bines them with a projected spacecraft state provided by 
EXEC, and formulates a planning problem.  This decompo-
sition into long-range mission planning and shorter-term 
detailed planning enables RA to undertake an extended mis-
sion with minimal human intervention. 

PS then takes a near-term planning problem and produces a 
flexible, concurrent temporal plan for execution by EXEC.  
PS constructs plans using domain constraints and heuristics 
in its knowledge base. Third-party software modules are 
interfaced to provide efficient computation for specialized 
problems such as navigational or attitude control which are 
beyond the scope of planner domain models. 

EXEC executes a plan by decomposing the high-level plan 
activities into primitives, sending out commands, and moni-
toring progress based on direct feedback from the command 
recipient or on inferences drawn by MIR.  If some task can-
not be achieved, EXEC may attempt an alternate method or 
may request a simple recovery plan from MIR.  If the EXEC 
is unable to execute or repair the current plan, it cleanly 
aborts the plan and attempts to bring the spacecraft into a 
safe state while requesting a new plan from MM. 

MIR is responsible for mode identification (MI) and mode 
reconfiguration (MR).  The MI task involves observing the 

EXEC as it issues commands, receiving events from moni-
tors, and using a structural and behavioral model of the 
spacecraft to combine the sensor data and infer what state 
each component is in.  MIR returns this information to 
EXEC producing the illusion that EXEC can observe the 
status of each component directly. During the mode recon-
figuration task, MIR serves as a recovery expert.  Using the 
same structural and behavioral models, it takes a set of 
EXEC constraints to be established or maintained as input 
and recommends a single step recovery action to EXEC.  
(This can be done repeatedly to generate a limited class of 
longer recovery sequences. For details of the Remote Agent 
see [7,8,9,10].) 

The Flight Experiment 

The flight experiment was conducted between May 17th and 
21st 1999.  The Remote Agent achieved all its technological 
goals and was fully flight validated with some problems 
encountered along the way.  This timeline summarizes what 
occurred: 

Oct 24 
1998 

DS1 Launch 

May 17 
1999 

 

11:04pdt RAX starts 
 First plan is generated (but with a deviation from testing 

runs) 
 RAX performs nominally through the night 
May 18  
7:00pdt 
 

RAX team realizes EXEC has ceased to command the 
spacecraft 

17:00pdt RAX is stopped with 70% of validation objectives 
achieved 

May 
19-20 

Problem debugged and software patch developed 

 Completely new experimental scenario developed and 
tested on flight analog hardware in 10 hours 

 Project team accepts the new scenario, rejects the 
patch 

May 21  

7:30pdt The new scenario is activated 
 During the experiment, supporting software fails to 

confirm an IPS state transition (out of scope for RAX).  
Problem proves benign. 

 RAX completes scenario achieving 100% of validation 
goals 

 

The most significant events were the early deviation from 
planner testing runs, the discovery of the software bug, and 
the creation and testing of a new scenario in 10 hours (pos-
sible only because the autonomy software did much of the 
work). These events are described below.  For a detailed 
account of the experiment, see [3]. 



Current Flight Control Software 
The Jet Propulsion Laboratory’s (JPL) ground tools are rep-
resentative of the current state of the art. The widely used 
Multimission Ground Data System (MGDS) receives and 
stores telemetry from the spacecraft.  The Data Monitor and 
Display Subsystem (DMD) allows ground controllers to 
read, analyze, and display specific telemetry and related 
channel values in a variety of formats. MGDS provides fa-
cilities for converting units and generating derived channels 
(functions of one or more other channels).  Key parameters 
are then compared against pre-set limits and alarms are gen-
erated if those limits are violated.  The data are then avail-
able to a variety of output ports such as tables, plots 
(channel vs. channel or channel vs. time), and alarm pages.  
The resulting user interface consists of sets of pages densely 
filled with color-coded numbers representing the state of the 
spacecraft. 

The Remote Agent is fundamentally different from previous 
flight control software in the degree to which it (a) main-
tains an internal representation of what it is doing and why, 
and (b) infers the status of spacecraft components not ob-
servable directly by internal sensors.  These differences are 
reflected in the ground tools. 

3. THE RA GROUND TOOLS 
The two major goals of the RA ground tools are: 

1. Present a summary of the spacecraft status under-
stood easily by the mission operations team.  

2. Present enough information about the inner work-
ings of the RA software for the experiment team to 
quickly recognize and debug problems. 

To support these goals, telemetry specific to Remote Agent 
was downlinked during the test. Given the abstract nature of 
the RA decision-making, conventional telemetry describing 
the spacecraft state would have given only the coarsest view 
of the Remote Agent’s performance. RA could potentially 
generate correct commands (visible via conventional te-
lemetry) for the wrong reasons (visible only with RA-
specific telemetry), which would not bode well for the re-
mainder of the test. 

The RA-specific telemetry included contained: 

1. Planning events (e.g., planning started, finished, 
and progress messages) 

2. Sequence execution events (e.g., plan p is starting 
execution, or plan step x started executing at time 
t1) 

3. Mode interpretation events (e.g., valve v changed 
state from nominal to possibly-stuck-
closed) 

4. Messages between RA components and between 
RA and other DS1 flight software. 

This telemetry was event oriented and largely incremental, 
i.e., interpretation of one message depended upon receipt of 
earlier messages.  This design created some problems we 
will detail later.  In addition, there were heartbeat (“I’m still 
alive”) messages from RA components visible in the normal 
DS1 telemetry.  The next sections describe specific ground 
tools constructed to examine this telemetry. 

Telemetry Data Flow 

Figure 2 shows how this telemetry flowed from the space-
craft to the RA ground tools.  First, downlinked telemetry 
and files were received by the Deep Space Network (DSN) 
and sent to MGDS.  Remote Agent ground software 
(mgds2rax and the Decoder) then retrieved RA-specific 
telemetry from the MGDS database and published packets 
on a software message bus (TCA-IPC) used by all RAX 
ground tools.  The flexibility of this message bus enabled us 
to run duplicate collections of ground tools at JPL and 
NASA Ames and to safely add modified versions of our 
ground tools at the last minute to support the RAX web site, 
further illustrating the plug-and-play paradigm.   

 

Figure 2: RA Tool Data Flow 

Packet View 

Remote Agent telemetry is event-based.4  PacketView dis-
plays these events in a simple one line per message format 
that is easily understandable to all members of the team.  As 
such, PacketView was the foundation of the RA ground 
tools (see Figure 3). 

                                                        
4 This caused problems with dropped and delayed packets as 
we describe later. 



 

Figure 3: PacketView (telemetry packet) display 

The PacketView interface displayed four types of telemetry 
packet: EXEC - executive telemetry, PS - planner/scheduler 
telemetry, MIR - mode identification/ recovery telemetry, 
and IPCO_RAXO - on-board messages sent between the 
three RA components.  These were displayed as color-coded 
scrolling lines of text.  Missing packets, detected by gaps in 
the sequential packet numbering, were displayed as a single 
line in a unique color.  Search capabilities were available 
based on message type and content.  User selectable dialogs 
presented "pretty-printed" versions of the single-line packet 
entries.  The "time bar" displayed the most recent "space-
craft sent" Greenwich Mean Time (GMT), the most recent 
"ground received" GMT time, and a running time since last 
packet was received. 

  

ExecView 

ExecView visualized the execution status of plans onboard 
the spacecraft (see Figure 4).  Different kinds of activity 
associated with different parts of the spacecraft appeared on 
separate timelines.  For each kind of activity, specific 
planned events were represented as "tokens" appearing 
along the timeline.  Tokens were color-coded to represent 
their execution status, i.e., in-the-future, currently-
executing, completed and completion-overdue. 

The Remote Agent used a constraint posting planner that 
models the activity to be scheduled as a set of tasks with 
temporal constraints among them (see [18]).  For instance, 
communication with the ground couldn’t occur during an 
interval in which the spacecraft was turning to point its 
camera at a target.  It was the job of the planner to find a 
schedule that satisfied the many constraints between activi-
ties.  A significant part of understanding the performance of 
the planner involved understanding its handling of these 
constraints.  ExecView provided ways to visualize these 
temporal constraints, and the user could see how they 
evolved as the plan execution proceeded. 

As the plan was being executed by Exec onboard the space-
craft, the start and finish times of the activities would be 
expected to change.  Through the constraints, these changes 
would impact later activities.  ExecView would propagate 
these changes downstream in the schedule, using the same 
propagation techniques used by the Planner.  

ExecView was designed initially as a debugging tool for 
validating Exec development. As a result it did not have 
support for handling missing telemetry packets during 
flight.  As a result, it produced some erroneous conclusions 
during RAX concerning the state of plan execution.  To 
make ExecView more useful, it will have to handle such 
missing data.  One approach would be to view the problem 
ExecView is solving as a dynamic constraint satisfaction 
problem (see [19]) where some terms are unknown during 
testing and other terms are unknown during flight.  In test-
ing, the Exec’s actions and the current clock time are known 
completely, and the unknown is whether the EXEC is oper-
ating correctly (executing tokens at the correct times).  In 
flight, the reports of actions taken and the knowledge of the 
current clock time may be incomplete, but it can assume that 
the EXEC is doing its job. If the EXEC reports Task B5 is 
finished after a few missing packets, ExecView could safely 
assume that Task B5 was previously started, and even that 
Task B4 must have finished.  

 

Figure 4: ExecView (plan execution status) 

The Ground Planner 
Of the three technology modules flown as part of the RA, 
the spacecraft team was least comfortable with PS. To allow 
the DS1 team to gain confidence in the planner, the RAX 
team used a ground twin.  The ground planner was identical 
to the one onboard and was able to duplicate the onboard 
twin by tapping into the real time telemetry available on the 
ground.  It had access to other flight software resources via 
connection to a high-fidelity testbed.  This testbed accu-
rately replicated the software onboard DS1 although it did 
not replicate the hardware.  Of particular importance to the 
planner were navigation module and beacon asteroid file 



describing targets for optical navigation and the portion of 
the attitude control software that predicted the time required 
to change spacecraft orientation. 

 

Figure 5: Ground Planner Twin system architecture 

With one exception, described below, the ground planner 
was a useful tool in predicting the performance of the plan-
ner onboard and was especially useful as a confidence 
builder for mission staff unfamiliar with the working of an 
autonomous planning agent. Figure 5 gives an overview of 
the system architecture of the ground twin. 

PS Graph 

PS Graph (see Figure 6) displayed search history for each 
plan generated by the on-board Planner as a x-y graph rep-
resenting the search depth vs. number of search nodes vis-
ited.  The purpose of these plots was to provide a gross 
metric indicating whether the planner was proceeding as it 
had during testing and to check agreement with the ground 
twin.   

 

Figure 6: PS Graph (planner progress) display 

During flight, we noticed that the onboard planner’s search 
history deviated from both the ground twin and previous 
testing.  Since the software and file configurations were 
expected to be identical between the ground and the space-

craft, this discrepancy was unexpected.  We later discovered 
the discrepancy to be caused by a difference in the content 
of the file containing the onboard navigator’s beacon aster-
oids.  This file version difference resulted in a navigation 
plan involving different asteroids, attitudes and turn times.  
Though designed for just this sort of variation, the planner 
onboard was, in fact, asked to solve a problem it had never 
been tested on!  And it did so successfully.  This uninten-
tional demonstration gave the flight team greater confidence 
in the new planning technology. 

Stanley and MIR 

A version of MIR was also run on the ground.  The purpose 
of this was to infer MIR’s full internal representation of the 
spacecraft state from the telemetry which contained a much 
smaller subset.  Specifically, it contained the set of inde-
pendent variables in MIR’s spacecraft model. The Stanley5 
ground tool displayed a hierarchical schematic of the space-
craft's on-board components whose status was driven by the 
ground MIR (see Figure 7). 

Components could be opened to show more detail or closed. 
The states displayed were blue (ok - powered off), green (ok 
- powered on), yellow (recoverable failure), purple (de-
graded failure), and red (permanent failure).  Since Stanley 
assigned colors to all states, nominal as well as off nominal, 
it allowed the user to tell at a glance the conditions of the 
devices.  Stanley did not address the issue of displaying 
continuous values, such as a battery state of change.  DMD 
displayed such values textually, with units. 

 

Figure 7: Stanley (hardware status) display 

In addition to the color changes, detected component faults 
were reported by popping up an alert box.  The alert box 
allowed the user to click on an entry, resulting in the sche-

                                                        
5 The engine underlying MIR is called Livingstone 



matic being opened down to the appropriate hierarchical 
level to show the local context of the fault.  Histories of all 
state changes, important or not, were available at any time 
by clicking on components. 

Predicted Events 
Although the Remote Agent is autonomous in principle, 
ground operators need to coordinate certain activities with 
it. For example, the Deep Space Network stations need to 
know when to expect signals from the spacecraft and when 
to expect its High Gain Antenna to be pointed away.  Also 
since ground operators were watching the commands RA 
issued closely, it was important to have a prediction of when 
the RA planned to take various actions, so that the appropri-
ate subsystem stations at the mission operations center could 

be staffed.  Like the conventional MGDS system, the RA 
ground system produced a predicted events list of “activities 
scheduled for execution”.  However, the activities for RA 
were high-level and structured, the scheduling was done on-
board and was flexible, and the execution was more com-
plex. 

In conventional missions, commands are prepared on the 
ground, and time specifications provided by the operations 
and science teams (e.g. “start this command ten seconds 
after the previous command starts”) are reduced to absolute 
time values.  A Predicted Events File (PEF) is a fully ex-
panded version of the low-level command sequence, along 
with calls to on-board routines and the like.  This is gener-
ated for use during the final command approval process. 

In the case of the RA, a plan is generated on board from the 
goals outlined in the mission profile, and so the timing is not 

known until the plan is reported via telemetry. Even then, 
there is flexibility in the timing since only as an activity is 
being executed will specific times for its initiation and ter-
mination be chosen. Until execution, activities are associ-
ated with time windows.  For instance, while a traditional 
sequence will allow a fixed amount of time for the Xenon 
tank to pressure before turning on thrust, the Remote Agent 
can give the next command any time within a flexible time 
window, as soon as it finds that all preconditions for thrust-
ing are met. The predicted-events printouts used for RA 
therefore indicated the earliest and latest possible start 
times. 

The printouts reported both the low-level commands RA 
would issue together with the high-level actions RA was 
asked to take.  The high-level actions served as a summaries 

for and explanations of the low-level commands.   RA was 
designed to decide on task decomposition in real time, not 
to report them in advance, so the breakdown and timing 
were exacted from logs of pre-flight tests.  In this case, the 
low-level advance information was of interest only because 
of the experimental nature of the RA, but there may inher-
ently be an issue to be kept in mind at design time: as in 
human planning, some details that can be decided on at the 
last moment may have an impact on a third party's own 
planning and so may need to be settled in advance. 

Public Outreach via the Web 
The RAX team constructed two additional tools to present 
the remote agent's progress to the public.  These tools are 
interesting because they required an even higher target for 
simplicity and understandability than did the flight control-

07:07:58 Rotating the spacecraft, to point MICAS camera at Asteroid 39 Laetitia, and the solar panels 
at the sun. 

07:21:16 Taking an image of Asteroid 39 Laetitia, as requested by Autonomous Navigation system. 
07:44:52 Rotating the spacecraft, to point the ion engine thrust at ra 4.1666, dec -0.3550, x=-0.4867, 

y=-0.8014, z=-0.3476, and the solar panels at the sun. 
09:00:56 Commanding the ion propulsion system to pressurize the xenon tank. 
09:11:12 Commanding the ion drive to start thrusting. 
09:11:15 Commanding Attitude Control Subsystem to use ion drive for steering. 
12:54:10 Commanding Attitude Control Subsystem to use thrusters for steering. 
12:54:13 Commanding the ion drive to stop thrusting. 
16:09:11 Rotating the spacecraft, to point High Gain Antenna at Earth, and the solar panels at the sun. 
16:11:51 Spontaneous spacecraft state changes just detected: 

- Steering with thrusters is degraded but usable. 
- Earth standby capability is degraded but usable. 
- Sun standby capability is degraded but usable. 
- Ability to use X-facing thrusters for Y-axis torque has failed and appears unrecoverable. 
- Ability to use Z-facing thrusters for Y-axis torque is degraded but usable. 

16:11:51 RAX is looking for a way to recover. The recovery will have to achieve (or maintain) four im-
portant states: 

- Make it so steering with thrusters is working okay. 
- Make it so ACS is steering with thrusters. 
- Make it so MICAS camera is powered on. 
- Make it so Low-Power Electronics subsystem is working okay. 

16:11:52 In an attempt to recover, RAX has decided to command Attitude Control Subsystem to employ its 
ability to use Z-facing thrusters for Y-axis torque. 

Figure 8: Sample of summarized telemetry 



lers’s tools.  The tools were emailed summaries of events 
onboard presented in simple English and a Java applet time-
line display patterned after execview 

Several recent missions have used pagers and email to de-
liver notifications to the mission operations team.  The DS1 
ground system, for instance, alerted operators by pager 
when a given measurement strayed outside a preset range or 
when fault protection telemetry went into an unusual state.  
We took this a step further in RAX by producing descrip-
tions of important events in common English.  See figure 8 
for an example.  The summarized descriptions were auto-
matically posted to our web site (rax.arc.nasa.gov) and 
emailed in batches to a public mailing list.  2000 subscribers 
received this email during RAX.  Terse descriptions were 
also sent to team members’ alphanumeric pagers via email. 

This was done by applying a set of rewrite rules to the RAX 
telemetry.  These rules filtered the event stream to identify 
important events.  They then expanded the stylized event 
descriptions into English sentences using templates and 
translated event parameters using lookup tables.  For exam-
ple, a DS1 turn specification includes about a dozen 
parameters including an asteroid id number and codes for 
the antenna and camera bore sights.  These numbers were 
looked up in tables to produce human-readable messages. 

Critical to achieving event summaries that would convey 
what the Remote Agent was doing onboard, without obscur-
ing detail, was Remote Agent’s ability to represent its own 
goals.  This allowed us some flexibility in tuning the event 
filtering to provide an appropriate level of detail.  Even 
then, we didn’t achieve English summaries as effective as 
we wanted because some information about why RA was 
doing certain actions was not downlinked during the test but 
stored onboard for later transmission.  Were we to do this 
again, we would include more of this information in teleme-
try. 

We also provided an alternative description of Remote 
Agent activity (Figure 9) using horizontal timelines pat-
terned after ExecView.  This was implemented as a java 
applet.  The timelines in the top window represented major 
kinds of activity (e.g., attitude or camera-related activity).  
Along the timelines were boxes indicating particular activi-
ties (e.g., a turn) in effect reproducing the plans generated 
onboard on a user’s web browser. At the bottom left were 
controls to step through the timelines.  At the bottom right 
was an event-based summary similar to that provided in 
email.  This box was slowly added to as new telemetry came 
down.  The most interesting feature of this applet was its 
ability to show what RA planned to do at any point in the 
experiment by selecting the event that occurred at that time.  
This is interesting because the plan changed several times 
due to simulated faults.  Thus it provided an historical over-
view of Remote Agent's re-planning activity and recreated 
for the general public conditions onboard the spacecraft. 

 

 Figure 9: Timeline Applet 

Due to time pressure, the outreach tools were designed to 
handle the nominal scenario only (including the simulated 
faults).  They did not accurately reflect the RAX software 
problems that occurred.  They did, however, summarize 
activity during the new scenario without modification. 

These outreach tools caused some debate within the project 
team because of their potential to inform the public immedi-
ately of a problem onboard before it was well understood by 
the team.  It was always assumed the public would get this 
information, but the possibility that the tools would magnify 
the public's awareness of small problems or problems that 
could easily be handled was a legitimate worry.  Also, bugs 
in these explanation tools that gave a false impression of 
activity onboard couldn't be easily corrected if summaries 
were sent automatically.  In the end, we believe the team 
allowed the tools because RAX was an experiment that did 
not risk the spacecraft.  In the future, we will continue en-
hancing our tools for summarizing and presenting events 
onboard spacecraft to the operations team.  How this infor-
mation best gets to the public is still open. 

 

4. DISCUSSION 

High-level commanding & delegation 

Central to Remote Agent is the idea of ground controllers 
delegating tasks to a software agent onboard.  What distin-
guishes RA from sequencing software is the degree to which 
the tasks can be specified in terms of high-level goals, leav-
ing to the agent the details of accomplishing the goals and 
managing their interactions. 

Delegation to a software agent has several advantages.  
First, if reliable, delegation can reduce ground controller 
workload significantly.  Second, the agent can handle con-
tingencies and off-nominal events quickly, without the de-
lays associated with safing the spacecraft and 
communicating with Earth and thereby avoiding regenera-



tion, testing and validation of possibly complex sequences.  
In time-critical phases of a mission, for instance Cassini’s 
insertion into Saturn orbit, handling contingencies quickly is 
not just essential but critical to the success of the mission. 

A simple version of such a scenario, but one that occurs 
more often in practice, is handling minor deviations in plan 
execution such as steps finishing later than expected.  This 
is possible when the agent "understands" the relationships 
between different steps in the plan.  For instance, a delay is 
normally not a problem, except when it in turn delays a later 
step with absolute time constraints, say for instance, a com-
munication window with the DSN.  Deciding which situa-
tion the agent is in and compensating if necessary requires 
reasoning about these relationships.  Note that timing varia-
tions can be helpful too, such as when an activity finishes 
earlier than planned for.  This may leave extra time for other 
activities, such as science observations that may otherwise 
not be optimized. 

High-level commanding has a profound impact on ground 
tools.  Clearly they must be able to display goals, plans and 
plan execution status.  And they must indicate deviations 
from the plan and any corrective actions the agent takes.  
High-level commanding also makes possible summaries like 
those generated by the telemetry-to-email and html tools.  
Central to doing this in a general way are the relationships 
between the high-level goals and low level commands used 
by the agent to achieve them.  These relationships allow a 
ground tool to cluster the low level commands and summa-
rize them as a single event.  Of course, the details must be 
easily available.  There is a fundamental tension between 
human operators, with their experience, intuition and so-
phisticated pattern recognition abilities, focussing on raw 
sensor data from a spacecraft and the associated high work-
load versus the pressure to handle more missions with fewer 
resources.  We believe summarization of this sort is an ef-
fective way for ground operators to avoid information over-
load in the future. 

Yet another aspect of  such a paradigm has to deal with mis-
sions of extended duration. As humans have gone from ex-
ploring celestial bodies closer to earth, to those further 
away, the time it would take to get there is going to in-
crease. At the same time, budget constraints have forced 
space agencies to achieve ambitious goals within smaller 
operations teams. One prominent example of such diverse 
goals in a mission is the COmet Nucleus TOUR (CON-
TOUR) mission to be run out of the Johns Hopkins Applied 
Physics Laboratory. The basic goal is to visit 3 comets in 
different stages of evolution over a 6 year mission (see Fig-
ure 10). With the exception of the time during encounters, 
CONTOUR will be in a spin stabilized hibernation mode. .  
During the non-encounter periods of the mission the space-
craft systems will be put into a hibernation mode and the 
operations staff will be very low or non-existent. At encoun-
ter – 60 days the operations staff will be reactivated, contact 

will be made with the spacecraft, and a checkout will begin. 
Because the mission will be intermittently staffed, it is 
highly likely that spacecraft knowledge by the operations 
staff would have degraded and have to be regained when the 
spacecraft awakes from its hibernation. In addition it is dif-
ficult to retain detailed knowledge of previous states and 
behavior of the spacecraft and its subsystems. Either the 
necessary personnel are no longer available or they have 
moved on to other projects and are no longer experts for the 
current mission. 

Under such a situation, ground tools which can rapidly pro-
vide a quick overview of the spacecraft using notations 
based on high  level commanding would be most valuable. 
Missions staff unfamiliar with the modalities of operating a 
different mission or craft can quickly come up to speed and 
achieve situational awareness in a matter of days and not 
months. They can be provided with high level commanding 
goals enabled on the spacecraft during its lifetime and un-
derstand the nature and cause of faults encountered onboard. 
Using conventional means, the user would be forced to 
delve into large datasets to fully understand the scope and 
history of the past performance of the spacecraft not to men-
tion be unprepared to deal with any contingencies within the 
current timeframe. 

 

 

 

Figure 9: The CONTOUR Mission 

Science Operations 

High-level commanding has benefits outside of the opera-
tions community.  Applied to a science mission, the logical 
extension of the idea is for the science team to interact with 
the onboard software agent directly through high-level goals 
and summarizations of the resulting activity (plus the result-
ing science data).  The operations team would focus on in-
teraction with shared resources like the DSN and on 
problems when they arose.  We did not explore this with the 
remote agent experiment, which was primarily a technology 
demonstration.  Our team did not interact directly with any-
one who sought space science instrument data. 

On Earth, however, our research group has done a series of 
autonomous rover field tests with the goal of making the 
rover increasingly an extension of the scientists' eyes and 
hands.  These tests have used high-level commanding and 
delegation to a software agent as a way to enable the scien-
tists to interact directly with the rover in terms they care 
about and avoiding technical details that can be abstracted 
and handled automatically.  With the expected increase in 
the number of NASA and commercial missions, we expect 
an increased emphasis on Science Operations.  Mission Op-
erations, we believe, will become more opaque to the actual 



end users.  Networking will also enable PI’s to control mis-
sions from their home institutions in distributed geographic 
locations rather than gather for extended periods at a mis-
sion control center. 

Mixed-Initiative Control 

New generations of autonomy technology like Remote 
Agent will provide the ability to handle more complex mis-
sions more robustly.  But will operations and science teams 
accept the reduced level of ground control inherent in higher 
levels of onboard autonomy?  Are there risks to increased 
autonomy? 

Yes there are: autonomy is a tradeoff.  Where are the checks 
and balances for decisions made onboard?  What about re-
duced situational awareness?  In a time-critical situation, 
will ground operators have difficulty getting "up-to-speed" 
on the state of a spacecraft that has been monitored and ad-
justed by an onboard agent?  During science missions, in-
vestigators are rightly concerned about any filtering or 
interpretation of instrument observations onboard or any 
automated focus-of-attention mechanisms.  Note that all of 
these issues also arise in the relationship between astronauts 
and ground controllers. 

Although RAX was intended as a demonstration of full 
autonomy, we recognize these legitimate concerns and are 
working to provide variable levels of autonomy.  Remote 
Agent as it was tested could not do this.  It was all-or-
nothing: either it was responsible for managing tasks within 
its prescribed area of activity or not.  Our research group at 
NASA has several projects underway to examine various 
ways to allocate responsibility. The key here is the notion of 
“mixed-initiative” control.  This means the ability to seam-
lessly handle control actions initiated both on the ground 
and within the onboard agent.  The key problems are mak-
ing sure that activities commanded by the agent and the 
ground do not conflict with each other or incrementally re-
planning any agent-initiated activity that does conflict; de-
signing user interfaces that convey to the ground operators 
the effects ground commanded actions will have on the cur-
rently planned onboard activities; and ground tools to assist 
operators in constructing their commands quickly and accu-
rately. 

While autonomy should enable more complex and robust 
missions, it will also reduce controller workload allowing 
controllers to handle more spacecraft.  This will be critical 
to achieve a new kind of mission: the spacecraft constella-
tion. 

Constellations 

Spacecraft constellations have recently become a hot topic 
driven by many factors including the distributed interfer-
ometry techniques planned for the terrestrial planet finder 
and NASA's cheaper, faster, better design philosophy.  Sen-

sorWeb is one long-range concept proposed by the Goddard 
Space Flight Center in which hundreds of heterogeneous 
satellites cooperatively achieve our Earth observing goals.  
Redundancy and the ability to incrementally upgrade the 
constellation with new instruments without significantly 
changing the control problem are two advantages of this 
concept.  Near-term efforts include The New Millennium 
ST3 with its plan to fly two similar spacecraft within a tight 
formation to image identical portions of the sky.  JHU/APL 
is also expecting to fly the STEREO mission to study solar 
activity and provide data in real-time to understand global 
climactic changes on earth due to this phenomena. 

Constellations are here to stay. One can expect to see con-
stellations of cheap deep space probes being sent out to dis-
cover life in other solar systems. These could be 
homogenous or heterogeneous and controlled using a classi-
cal master/slave control law or in a more distributed man-
ner. In any case, the complexity of performing mission 
operations increases dramatically with additional platforms 
in space however simple they might be. High level com-
manding and transparent control will not only be desired but 
be necessary for such mission design. In the event of a col-
lective anomaly (massive solar flares for instance), opera-
tors will need to rapidly assess the state of the constellation 
fleet and access damage and react to save multiple space-
craft that might have reacted in different ways. Their tools 
will not only have to provide a succinct high-level view of 
the situation but provide details of individual spacecraft and 
suggest potential recovery actions. We believe technologies 
such as the Remote Agent, which works at higher abstrac-
tion levels, has an inherent advantage over the suite of tools 
currently available.  Moreover, portions of these constella-
tions may be deployed and owned by different organizations 
and countries.  The desire to coordinate commanding across 
organizations will place an even higher premium on tools 
for maintaining situational awareness across the whole con-
stellation. 

The same can be said of doing science. With greater num-
bers and diversity of platforms a principal investigator 
would need to manipulate simultaneously for doing say in-
terferometry, it is inconceivable that s/he would be in a posi-
tion to command and control such multitudes of vehicles 
without either a vast array of operations staff or tools which 
will abstract telemetry data and provide a clear picture of 
the state of the system. 

Verification and Validation 
Section 2.2 of this paper gives a brief synopsis of the Re-
mote Agent in flight and mentions the discovery of  a bug 
leading to the stoppage of the experiment when 70% of the 
validation objectives had been accomplished. 

It is instructive to look closely at the way the bug was diag-
nosed and conclusively discovered.  A missing critical sec-



tion in a part of the Executive’s code was the reason one 
Exec thread was waiting for the other indeterminately. The 
bug itself was noticed after it was discovered that the RA 
had stopped executing, but that the spacecraft state itself 
was deemed healthy. In order to get conclusive evidence as 
to the nature of the bug, members of the RA team uploaded 
sequences that evaluated variables in the running environ-
ment of the Exec. The returned values indicated the state of 
each of the concurrent threads the Exec was supposed to be 
running which helped in rapid convergence to the portion of 
the Exec code where the missing critical section was found. 
A quick test with various timing parameters to simulate on-
board conditions revealed that this was indeed the case.  
Simultaneously, while the debugging was being undertaken 
at JPL, members of the Automated Software Engineering 
group had been challenged to find the same bug in the RA 
software without access to any run time data.  Indeed, Veri-
fication and Validation (V&V) techniques used by the group 
independently found the bug on a simplified model of the 
Executive’s plan runner module which does thread man-
agement.  It turns out a similar bug was found by them 2 
years earlier (see [16]) in a different section of the code; the 
flight bug was a cut and paste error which was not corrected 
when the first error was found and fixed! 

The events described above highlight the importance of 
V&V techniques in debugging complex software.  While 
they are not a panacea in themselves due to their inability to 
completely explore all possible paths of flow of complex 
systems, techniques are available to model restricted subsets 
of the execution traces of the software itself.  Such meta-
models allow limited (albeit useful) evaluation such as the 
above, to take place.  As a result of this exercise, therefore, 
more research is currently being undertaken at NASA Ames 
to fully understand the scope of domain models of space-
craft and to automatically model them within model-
checking tools such as [17].  Increased emphasis on auto-
mated scenario based testing [8] is also critical to under-
stand how software for complex autonomous systems is 
likely to behave in a situated environment and to provide 
some measure of guarantee and reliability in mission critical 
environments. 

Spacecraft as Appliances 

Increasingly in the Internet world, the concept of appliances 
are becoming a reality [4]. For instance internet accessible 
vending machines that check the status of their contents 
have been available for years [1]. Web based control inter-
faces to devices like robots and cameras have also become 
ubiquitous. Microsoft, the U.S.  Geological Survey and oth-
ers have come together to provide satellite imagery from the 
SPIN-2 spacecraft in 2-meter resolution via the web as part 
of the TerraServer project. Some of the applications touted 
from this venture are in discovering and fighting forest fires, 
assessing environmental damage, urban planning, planning 
for construction sites and just for “plain fun” [5]. 

Given this trend, it’s very possible that people would like to 
have space imagery for prospective vacations, for naviga-
tion in unfamiliar surroundings and simply as a means to 
understand the topography of a particular area. We predict 
there will come a time when spacecraft themselves will also 
become appliances which will be accessed by ordinary citi-
zens for purposes of science, entertainment or perhaps even 
as proxy for traveling out in interstellar space. The space-
craft in effect becomes a “server” for an individual's needs, 
whether it is for science or entertainment. 

While simple interfaces will suffice for requesting and ob-
taining space based images like those by the TerraServer, 
for individuals to be able to remotely control and maintain 
spacecraft as entities in space will require more than the 
simple interfaces available. Light time communication de-
lays will increase the importance of agents acting as proxies 
for groups of users on the ground, representing their inter-
ests and goals as conditions change in space. Symbolic rep-
resentations of spacecraft data will be essential so that data 
is easily understood, digested and manipulated by lay indi-
viduals. Such an individual will require abstractions of sub-
systems now commanded to the minutest detail, like ACS, 
OpNAV and engines. They will need abstractions to ma-
nipulate the orientation of the spacecraft for optimal imag-
ing patterns without bringing harm to the craft.  
Abstractions of telemetry data received by the individual 
will provide high-level information to the user at a glance, 
and will enable users to dig down into details when neces-
sary. 

5. CONCLUSION 

Advanced autonomy is providing new opportunities for 
flight controllers and science teams to manage unmanned 
spacecraft more efficiently.  Autonomy allows delegation of 
low-level decision-making to software, more rapid genera-
tion of verified command sequences, and is a critical enabler 
for certain robotic mission scenarios that cannot be con-
trolled effectively from the ground.  However, improving 
this category of software's transparency, accountability and 
capability for mixed-initiative control is critical to its accep-
tance by the flight control community.  We have explored 
these issues via the ground tools for the Remote Agent ex-
periment onboard the Deep Space 1 spacecraft in May of 
1999. 
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